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Abstract

Market-based environmental policies are widely adopted on the basis of allocative
efficiency. However, there is growing concern that market-induced spatial realloca-
tion of pollution could widen existing pollution concentration gaps between disadvan-
taged and other communities. We examine how this “environmental justice” (EJ) gap
changed following the 2013 introduction of California’s carbon market, the world’s sec-
ond largest and the most subjected to EJ critiques. We estimate that the program
lowered GHG, PMy 5, PMyg, and NO, emissions by 3-9% annually between 2012-2017
for sample industrial facilities regulated only by the carbon market. Using a pollution
dispersal model to characterize resulting spatial changes in pollution concentrations,
we find the program caused EJ gaps in PMs 5, PMyg, and NO, from these facilities
to narrow by 6-10% annually. We demonstrate that explicit modeling of pollution

dispersal is critical for detecting these results.
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1 Introduction

Over the last three decades, policy makers have increasingly relied on market-based environ-
mental policies - such as pollution trading and taxes - to address environmental problems.
Expanded use of market-based policies followed each major amendment to the U.S. Clean
Air Act since the 1970s (Schmalensee and Stavins, 2019). Widespread adoption has occurred
in other environmental domains: today, market-based policies cover 30% of global fisheries
(Costello et al., 2016), account for over $36 billion in global ecosystem service payments
(Salzman et al., 2018), and govern 20% of global greenhouse gas (GHG) emissions (World
Bank Group, 2019).

The central appeal of market-based environmental policies is allocative efficiency. In
theory, such policies could reduce the total abatement cost of meeting an environmental
objective by inducing less abatement from polluters with higher abatement costs (Crocker,
1966; Dales, 1968; Montgomery, 1972). At the same time, the reallocation of emissions in-
duced by market-based policies also spatially alters who is harmed by pollution. This is of
particular concern as a growing “environmental justice” (EJ) literature has documented that
communities with lower income, higher minority share, and/or otherwise disadvantaged, sys-
tematically experience higher pollution concentrations than other communities, a statistic
we refer to as the environmental justice gap (or EJ gap).! While all environmental policies
can generate pollution inequities, market-based policies, by emphasizing allocative efficiency,
have raised questions about whether they present a distinct equity-efficiency trade-off (Shon-
koff et al., 2011; Farber, 2012; Boyce and Pastor, 2013).

This concern has been particularly prominent for California’s economy-wide greenhouse
gas (GHG) cap-and-trade (C&T) program, which was introduced in 2013 to meet the state’s
GHG target. It created the world’s second largest carbon market. While GHGs are a
globally-mixed pollutant and thus not subject to local pollution concerns, GHGs are often
co-emitted with local air pollutants such that a GHG C&T program could alter local air
pollution disparities. The possibility that the California’s GHG C&T program could widen
the state’s existing EJ gaps in local air pollution has, among other critiques, led to political
opposition that temporarily paused initial program development in 2011 and nearly halted
renewal efforts in 2017.2 However, to date, there has been limited evidence on whether

emissions reallocation due to the program has caused EJ gaps to widen.

'EJ gaps in the U.S. have been demonstrated at both local (Bullard, 2000; Bowen, 2002; Ringquist, 2005;
Mohai, Pellow and Roberts, 2009; Banzhaf, Ma and Timmins, 2019) and national (Tessum et al., 2019;
Colmer et al., 2020; Currie, Voorheis and Walker, 2020) scales.

2Similar concerns have appeared elsewhere: recent efforts to introduce state-level U.S. carbon pricing and
to renew the European carbon market were opposed on EJ grounds (Leber, 2016; Herron, 2019; Transnational
Institute, 2013).



Whether a market-based policy widens or narrows the EJ gap depends on how emitting
facilities, their abatement costs, and disadvantaged communities are distributed across space,
as well as what policy, if any, it replaces. Predicting the EJ gap consequence of a market-
based policy ex-ante, however, is generally difficult because a key determinant, facility-level
pollution abatement cost curves, is not typically observed. Under this data constraint,
we show that what happens to the EJ gap is ambiguous regardless of whether a market-
based policy replaces a no-policy scenario or an existing command-and-control policy , as
in California’s case. This underscores the need for ex-post empirical approaches, for which
prior studies have found mixed EJ gap effects across different settings (Shadbegian, Gray and
Morgan, 2007; Fowlie, Holland and Mansur, 2012; Grainger and Ruangmas, 2018; Shapiro
and Walker, 2021; Sheriff, 2022).

Quantifying the EJ gap consequences of a market-based climate policy requires overcom-
ing two empirical challenges. First, one must isolate how the policy altered emissions of
regulated facilities apart from potentially confounding macroeconomic conditions and other
“overlapping” climate policies that may interfere with market-based allocation. Second,
policy effects on pollution emissions at the facility-level must be converted to location-level
changes in pollution concentrations. We develop a statistical framework that jointly ad-
dresses these two challenges for California’s GHG C&T program.

To overcome the first challenge, we compare emissions between C&T-regulated and -
unregulated facilities which remove any common influence of macroeconomic conditions.
By design, C&T eligibility is based on whether a facility’s historic emissions is above a
threshold. As a consequence, emissions from C&T-regulated and -unregulated facilities differ
not only in pre-C&T levels but possibly also in pre-C&T trends. We use a differential trend-
break model to control for differential pre-trends, focusing on how differential trends change
after C&T’s introduction. To inform the central distributional concern that market-based
emissions allocation may have altered EJ gaps, we remove facilities additionally regulated
by overlapping climate programs in California, such as renewable portfolio and low carbon
fuel standards, as their abatement may be induced by those programs and not by the carbon
market. As a result, our main analysis sample consists of industrial facilities subject only to
the GHG C&T program as climate policy (hereafter “sample facilities”). While this comes
with the benefit of isolating the EJ gap consequences of the carbon market, the downside is
that our main sample covers only 5% of reported California GHG emissions. In sensitivity
analyses, we consider broader samples, including the full set of C&T regulated facilities.

We find that C&T reduced emissions annually between 2012-2017 at an average rate of
9%, 5%, 4%, and 3% for GHG, PMy5, PM;o, and NO,, respectively, across sample facil-

ities. These emissions effects are robust to various model specification; to concerns about



differential trends across sectors; and to the possibility of regulatory spillover effects. In
a placebo test that systematically imposes trend breaks across sample years, we generally
detect the largest trend break in the year when the program was actually introduced. In a
heterogeneity analysis, we find that larger emitting facilities undergo more abatement under
C&T.

To address the second challenge, we explicitly embed an atmospheric dispersal model
to determine how program-driven changes in facility-level pollution emissions alter the spa-
tial distribution of pollution concentrations. The canonical framework for evaluating the
pollution consequences of environmental policies requires characterizing the link between
pollution “source” and “receptors” (Baumol and Oates, 1988). Failure to accurately account
for pollution dispersal can lead to biased estimates even in otherwise valid quasi-experimental
settings (Deschenes and Meng, 2018). To address this, recent studies use atmospheric dis-
persal models to examine how source-level emissions vary as a function of the demographic
characteristics of downwind receptors (e.g., Grainger and Ruangmas (2018); Mansur and
Sheriff (2019)). However, one may still need to convert source-level emissions effects onto
the resulting spatial changes in pollution concentrations in order to obtain unbiased EJ gap
effects. We build on this literature by combining estimates of source-level emissions effects
(and its uncertainty) with an analysis of resulting EJ gap changes at the receptor level,
as determined by the atmospheric dispersal model, a computationally-intensive procedure
involving over two million pollution trajectories.

Employing a definition of a “disadvantaged” zip code that serves as a basis for California’s
EJ policies, we report three EJ gap findings from our sample facilities. First, consistent with
EJ concerns in the lead up to the C&T program’s introduction, we find not only were there
baseline EJ gaps across criteria air pollutants in 2008, but that gaps were widening in the
2008-2012 period before the program. Second, the C&T program has slowed down these
previously widening EJ gaps so much that they have been narrowing since 2013. Between
2012-2017, the program reduced California’s EJ gap by 7%, 6%, and 10% annually for
PM, 5, PMyg, and NO,, respectively. Third, while EJ gaps have narrowed, they have not
been eliminated: by 2017, the C&T program returned EJ gaps roughly to 2008 levels.

We subject our benchmark EJ gap effects to a variety of robustness checks. We detect
similar EJ gap consequences when we augment our sample with facilities that are additionally
regulated by overlapping climate policies, though we note the difficulty with disentangling
the role of C&T from that of overlapping policies in these estimates. We find that allow-
ing for heterogeneous emissions effects as a function of a facility’s average emissions does
not meaningfully alter EJ gap effects. We further demonstrate similar EJ gap effects when

employing an alternative atmospheric dispersal model that generates secondary PMs 5 con-



centrations as well as when using a finer scale definition of disadvantaged communities at
the census tract-level. An analysis of spatial heterogeneity reveals that EJ gaps narrowed
most for disadvantaged areas in California’s Central Valley, while a few disadvantaged areas
in Los Angeles County experienced widening gaps.

We demonstrate the importance of modeling pollution dispersal for our results. Our EJ
gap effects become unstable if instead of modeling pollution dispersal, we were to employ
more conventional approaches for assigning pollution emissions to concentrations, such as
restricting affected areas to within a facility’s zip code or within distance circles (of varying
radii) of a facility. We posit that our empirical approach may have broader applicability as
many environmental policy settings requires researchers to track how policy-driven changes
in pollution emissions alter the spatial distribution of pollution concentration (Greenstone
and Gayer, 2009; Graff Zivin and Neidell, 2013; Deschenes and Meng, 2018).

Finally, we discuss how to interpret our results in terms of a suitable counterfactual.
Because California was legally required to meet a GHG target, an alternative economy-wide
climate policy would likely have been adopted if not C&T, suggesting a continuation of pre-
trends may not serve as a suitable counterfactual. At the same time, it is unclear which
alternative policy would have been adopted. Given this ambiguity, we instead focus on the
2012-2017 estimated change, as done in other policy settings with pre-trends that differ in
direction with post-trends (Greenstone and Hanna, 2014; Lovenheim and Willén, 2019). This
implicitly assumes that the 2012 emissions distribution is held fixed in the absence of C&T
and is more conservative than estimates based on extending pre-trends.

The paper is structured as follows: Section 2 introduces a conceptual framework for
how a C&T program could widen or narrow an existing EJ gap and offers background on
California’s GHG C&T program. Section 3 summarizes our data. Section 4 details our

empirical approach. Section 5 presents our results. Section 6 provides a discussion.

2 Background

We begin with an overview of cap-and-trade (C&T) programs and how they can either
widen or narrow existing pollution concentration gaps between disadvantaged and other

communities. We then discuss California’s greenhouse gas (GHG) cap-and-trade program.



2.1 Cap-and-trade and the environmental justice gap

In a textbook C&T program, the regulator establishes a limit (or cap) on total emissions
within a jurisdiction by issuing a fixed supply of emission permits.® Regulated facilities
are then either given, or must purchase through trade, permits to cover their emissions.
Traditionally, two consequences of C&T are emphasized. First, by placing a price on pollu-
tion, a C&T program requires polluting facilities to internalize (some of) the social costs of
their emissions.? Second, by creating a market for pollution, a C&T program could equate
marginal abatement costs across facilities, inducing relatively less abatement from facilities
with steeper MAC curves and more abatement from facilities with flatter MAC curves. The
resulting allocation of abatement could, in theory, achieve the aggregate emissions cap at
the lowest total abatement cost across regulated facilities (Montgomery, 1972).

What is less clear is how emissions reallocation under C&T alters the spatial distribution
of pollution concentration. In particular, there is growing concern that the same market
forces intended for improvements in allocative efficiency may also be widening the differ-
ence in pollution concentrations experienced between disadvantaged and other communities,
which we call the “environmental justice gap” (or EJ gap).

The introduction of C&T can either widen or narrow an existing EJ gap. The direction
of this effect may also be hard to anticipate ex-ante. We demonstrate this using a simple
economic framework in Figure 1.° There are two polluting facilities with emissions (e) on
the horizontal axis and permit prices (7) on the vertical axis. The first facility is upwind of a
disadvantaged community with a marginal abatement curve labeled in solid orange (labeled
‘D’). The second facility is upwind of a non-disadvantaged community and has a marginal
abatement curve in dashed gray (labeled ‘A’).

First, consider the case where C&T replaces a no-policy scenario, or when 7, = 74 = 0.
When C&T is introduced, each facility’s MAC is equated to the equilibrium permit price
7*. Air quality improves for both disadvantaged and other communities. But because the
improvement may not be the same for both communities, C&T could widen or narrow the EJ
gap. If the DAC facility has a steeper MAC curve (panel a of Figure 1), then the DAC facility
will abate less than the non-DAC facility with C&T, and the EJ gap will widen. If, however,
the DAC facility has a flatter MAC curve (panel b of Figure 1), then the DAC facility abates
more than the non-DAC facility, narrowing the EJ gap. Unfortunately, facility-level MAC

curves are rarely observed, making it challenging to forecast what would happen to the EJ

3The modern C&T framework was initially developed by Crocker (1966) and Dale (1968).

4Whether social costs are fully internalized depends on if the cap is set at the socially optimal level.

5A richer theoretical framework would also incorporate various political economy considerations, such as
procedural justice concerns regarding obstacles disadvantaged communities face in environmental decision
making.



Figure 1: EJ gap under cap-and-trade
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NoOTES: Panels illustrate how the introduction of C&T can widen or narrow existing EJ gap in a two
facility setting. Horizontal axes indicate emissions. Vertical axes indicate marginal abatement costs, and
equivalently the permit price under C&T. The marginal abatement cost curve for facility upwind of a
disadvantaged community is shown as solid orange line (labeled ‘D’). The marginal abatement cost curve for
facility upwind of a non-disadvantaged community is shown as dashed gray line (labeled ‘A’). 7* indicates
the permit price under C&T. Panel a: C&T vs. no-policy (79 = 74 = 7°) with DAC-upwind facility
having a relatively steeper MAC curve. Panel b: C&T vs. no-policy (79 = 74 = 7°) with DAC-upwind
facility having a relatively flatter MAC curve. Panel ¢: C&T vs. command-and-control (C&C) policy with
heterogeneous shadow prices for DAC and non-DAC facilities, 77, and 74, respectively with DAC-upwind
facility having a relatively flatter MAC curve.

gap ex-ante.

This difficulty is compounded in the case when C&T is overlaid on existing environmental
regulation. Consider, for example, a prior command-and-control regulation that generates
heterogeneous shadow pollution prices across facilities (panel ¢ of Figure 1). Because such
prices are not observed, the introduction of C&T could widen or narrow the EJ gap even for
a given set of marginal abatement cost curves.

Figure 1 underscores the need for ex-post analyses. In practice, such studies must further
account, for several empirical features. First, the introduction of C&T may coincide with
changing macroeconomic conditions, requiring one to compare C&T effects for regulated
facilities relative to unregulated facilities. Second, when evaluating a GHG C&T program,
the EJ gap effect depends on the extent in which GHG and local air pollutants are co-
produced. Third, in practice, the spatial relationships between polluting facilities, their
abatement costs, and where disadvantaged communities reside are far more complex than is
illustrated in Figure 1. In particular, when multiple emitting facilities can affect air quality
in multiple locations, one needs to explicitly characterize how emitted pollution disperses

spatially. Section 4 details how we overcome these challenges.



2.2 California’s GHG cap-and-trade program

California’s has one of the world’s most sophisticated and ambitious climate policies. In
2006, California passed Assembly Bill 32, creating the first economy-wide GHG target in the
U.S. which required state-wide GHG emissions to return to a 1990 level by 2020.° In 2016,
California met its 2020 GHG target four years early. That same year, the state extended its
GHG target to 40% below the 1990 level by 2030.

A central program for achieving these GHG targets is cap-and-trade, introduced in 2013
and administered by the California Air Resources Board (CARB).” The program requires
participation by stationary GHG-emitting facilities producing at least 25,000 metric tons of
annual carbon dioxide equivalent emissions, or COqe, during any year between 2009-2012.%
The program becomes more stringent over time, mandating a declining cap on aggregate
emissions across eligible facilities. Today, California has the world’s second largest carbon
market by permit value, following the emissions trading system in Europe.

California’s GHG C&T program was adopted under a particular context. First, local
air pollution in California is subject to a combination of local, state, and federal air quality
regulations, many of which are command-and-control policies. Thus, it is likely that facilities
faced heterogeneous shadow prices on local pollution prior to the introduction of the GHG
C&T program, as captured by panel ¢ of Figure 1. Second, cap-and-trade is not California’s
only climate program. The adoption of C&T occurred against a backdrop of various sector-
specific climate programs that overlap with the economy-wide C&T, including a renewable
portfolio standard for electricity generators and a low carbon fuel standard for refiners, both
of which were adopted before 2013. Indeed, an ex-ante analysis of California’s GHG C&T
program demonstrated a potentially large role played by these overlapping programs (Boren-
stein et al., 2019). When overlapping policies bind — i.e., induce sector-specific abatement
that the economy-wide C&T would not on its own — it becomes hard to attribute emission
changes in these facilities to market-based allocation under C&T. To better isolate the role
of C&T, our main analysis sample focuses on GHG-emitting facilities that were not subject
to these overlapping policies.

Finally, there is the issue of what is the appropriate counterfactual had California not

adopted C&T. Because program eligibility is based on whether a facility’s historic emissions

6Covered greenhouse gases include COs, CHy, NoO, HFCs, PFCs, SF6, NF3 and other fluorinated GHGs.

"The GHG C&T program does not directly regulate local criteria air pollution emissions. Any changes
in the spatial distribution of local air pollution concentration due to the program is driven by the program’s
reallocation of local air pollution emissions that is co-produced with GHG emissions.

8Note that the emissions allocation under C&T includes the use of offset credits which allow a regulated
facility to meet up to 8% of its emissions with credits purchased from GHG abatement projects originating
in sectors not covered by the cap. Our estimated C&T effects are therefore inclusive of the use of offsets.



is above a threshold, emissions from C&T-regulated and -unregulated facilities differ not
only in pre-C&T levels but possibly also in pre-C&T trends, an empirical feature we indeed
detect in Section 5.1. While we employ a differential trend-break model (discussed in Section
4) to control for differential pre-trends, a question arises as to whether continuation of these
pre-trends serve as a suitable counterfactual. We do not think so. California’s 2020 GHG
target under Assembly Bill 32 was legally binding, implying that the state likely would have
adopted some form of economy-wide climate policy if not for the C&T program. In contrast,
pre-2013 trends are estimated in a period without an economy-wide climate policy. At
the same, it is unclear which particular C&T alternative would have been adopted instead:
policy proposals at the time ranged from local regulations targeting facilities located near
disadvantaged communities to uniform abatement requirements across all facilities. Given
this ambiguity about a suitable counterfactual, we instead emphasize the estimated 2012-
2017 change: how much did pollution emissions and the resulting EJ gap change for sample
C&T-regulated facilities after C&T’s adoption. This is similar to the estimated policy-
induced change emphasized by Greenstone and Hanna (2014), who also detect differential
pollution pre-trends in the context of Indian environmental regulations, and in other applied
settings where pre-trends are detected (Lovenheim and Willén, 2019; Rambachan and Roth,
2022). Implicitly, the estimated 2012-2017 change assumes a counterfactual holding the 2012
distribution of emissions across C&T-regulated facilities fixed over time in the absence of
C&T. As we show in Section 5.1, with rising differential emissions pre-trends and falling
post-trends, this implies a more conservative EJ gap effect than one based on extending

pre-trends.

3 Data

Our analysis involves two primary datasets: 1) GHG and criteria air pollution emissions
at the facility-by-year level and 2) an indicator of whether a zip code is considered to be

“disadvantaged” according to California legislation.

Facility emissions We obtain 2008-2017 facility-level annual emissions of GHG (or CO2e),
PM, .5, PM;o, NO,, and SO,, all in metric tons, from CARB’s Pollution Mapping Tool.” We
observe GHG as well as criteria air pollution emissions for both C&T-regulated and non-

regulated stationary facilities, before and after the introduction of the C&T program.'’

9 Available here: https://ww3.arb.ca.gov/ei/tools/pollution_map/

10Gtationary facilities with annual emissions past a certain threshold must report emissions. For GHGs,
the data reporting threshold is 10,000 metric tons of COse, set by CARB. For criteria air pollutants, CARB
sets a reporting threshold of 10 metric tons per year, but each air district can set lower data reporting


https://ww3.arb.ca.gov/ei/tools/pollution_map/

Several additional facility-level variables serve as inputs for the atmospheric dispersal
model. CARB provides facility latitude and longitude as well as pollution-specific stack
heights for a subset of facilities. For other facilities, we impute missing pollution-specific

stack heights using sector averages constructed from non-missing observations.

Definition of a disadvantaged community There is no established definition of a “dis-
advantaged” community. Previous papers in other settings use a location’s median income or
minority share of population as proxy measures (Fowlie, Holland and Mansur, 2012; Grainger
and Ruangmas, 2018; Mansur and Sheriff, 2019). For our setting, we select a policy-relevant
definition of a “disadvantaged” community. Senate Bill 535 (SB 535), passed in 2012, re-
quires a portion of the revenue from the auction of C&T permits to be directed towards
benefiting disadvantaged communities. SB 535 formally defines a “disadvantaged commu-
nity” using CalEnviroScreen, a scoring system based on multiple pollution exposure and
socioeconomic indicators developed by the California Environmental Protection Agency.'!
In our benchmark analysis, we use CalEnviroScreen v1.1 which assigns disadvantaged status
at the zip code-level and is constructed using pre-2013 indicators, mitigating concerns that
C&T may directly impact disadvantaged community designation. Specifically, a zip code is
considered disadvantaged if it contains all or part of a census tract with a CalEnviroScreen
score above the top 25th percentile. Zip codes designated as disadvantaged are shaded in
dark blue in Figure 2a. As a robustness check, we also use a later CalEnviroScreen v3.0
which has the benefit of defining a disadvantaged community at a finer census tract-level
but at the cost of being constructed using post-2013 indicators. We further augment our zip

code level data with average 2008-2012 population obtained from the U.S. Census Bureau.

thresholds. As a consequence, we observe criteria air pollution emissions below 10 metric tons, with no
evidence of bunching at 10 tons (see histograms of sample facility-year emissions in Figure S1). We confirmed
that emissions data in CARB’s Pollution Mapping Tool matches values found in source datasets: CARB’s
Mandatory Reporting Regulation (MRR) dataset for GHG emissions and the California Emissions Inventory
Development and Reporting System (CEIDARS) for criteria air pollution emissions. With the exception of
very large emitters with continuous emissions monitoring equipment that are not in our sample, CEIDARS
emissions is primarily estimated using data on facility-level inputs, outputs, and emissions factors, akin to
how emissions are estimated for the US EPA’s National Emissions Inventory. For CEIDARS, the added
regulatory structure between CARB and the state’s 35 Air Districts provides several additional layers of
data quality checks as well as the use of locally-relevant emissions factors.

"The socioeconomic indicators used to construct CalEnviroScreen do not explicitly include a location’s
racial and/or ethnic composition, though many included indicators such as poverty levels, educational at-
tainment, unemployment rate, are correlated with racial and/or ethnic composition (CalEPA, 2018). In a
robustness check, we use a location’s minority share of population as a measure of a disadvantaged commu-
nity.

10



4 Empirical approach

Our analysis proceeds along three steps. First, we use facility-by-year-level data to estimate
how the GHG C&T program altered GHG, PMs 5, PM;o, NO,., and SO, emissions. Second,
we feed C&T-driven PMs 5, PMyo, NO,, and SO, emissions predicted from the first step into
an atmospheric dispersal model to generate zip code-by-year-level concentrations of these
pollutants due to the program. Finally, we examine whether the C&T program changed
the concentration gap for these pollutants between disadvantaged and other communities

following its 2013 introduction.

Step 1: Estimating C&T effects on emissions The C&T program regulates stationary
GHG-emitting facilities producing at least 25,000 metric tons of annual COse during any
year between 2009-2012. We exploit this facility-level eligibility criteria and the program’s
2013 introduction to estimate its effects on GHG, PMy 5, PM;o, NO,,, and SO, facility-level
emissions during 2008-2017."? As noted in above, because the program’s eligibility criteria is
based on pre-C&T GHG emissions, we expect regulated and unregulated facilities to differ
in pre-program emissions levels and perhaps also in pre-program emissions trends. Our
empirical test therefore examines whether differential emission trends exhibit a break after
2013.13

Specifically, let j index facilities. C; € {0,1} is GHG C&T regulatory status with C; = 1

indicating facility j is regulated.'® For facility j in year t, Yﬁ is annual emissions of pollutant

12Data availability for facility GHG and criteria air pollution emissions for both regulated and unregulated
facilities and for periods before and after the program’s introduction is not common across cap-and-trade
programs. For example, facility-level pre-program emissions are not directly observed for the European
carbon market (Petrick and Wagner, 2014; Martin, Muiils and Wagner, 2016; Colmer et al., 2020). Even in
settings where emissions data is available, emissions-based eligibility thresholds can sometimes be too low
for there to be sufficient control units within the same jurisdiction, as in the case of Southern California’s
RECLAIM NO, C&T program (Fowlie, Holland and Mansur, 2012). We are able to compare regulated and
unregulated units within the same jurisdiction. Note that because there is no overlap in pre-program GHG
emissions for regulated and unregulated facilities, we are unable to implement a matching estimator that
matches on pre-program emissions, as is done in Fowlie, Holland and Mansur (2012) and Martin, Mutls and
Wagner (2016). Implementing such a matching approach would require emissions data from facilities outside
of California. That comparison, however, may be confounded by systematic unobserved differences between
California and non-California facilities.

13A differential trend-break model is similar to that of a standard difference-in-difference model with the
distinction that one is interested in the change in differential outcome trends after the policy rather than on
the change in differential outcome means.

14 All but 39 facilities that emit local air pollution found in CARB’s Pollution Mapping Tool have time-
invariant GHG C&T regulatory status between 2008-2017. These 39 facilities all switched status in 2017.
Under the C&T program, a regulated (unregulated) facility can become unregulated (regulated) if annual
GHG emissions fall below (above) the 25,000 metric tons threshold in any year during a prior compliance
period. Of the 39 facilities that switched status in 2017, 8 switched even though annual GHG emissions
during the previous 2015-2016 compliance period should not have permitted a regulatory status change.
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p € {GHG, PMs5, PMyy, NO,, SO,}. Because emissions exhibit a skewed distribution and
contain zero values, we apply an inverse hyperbolic sine transformation, which like a log
transformation lends a percentage effect interpretation, but with the added advantage of
retaining zero-valued observations (Bellemare and Wichman, 2020). To examine differential

emission trends driven by the C&T program, we estimate the following specification:
asinh(Y}j}) = w{[Cj x t] + k5[C) x 1(t > 2013) X t] + ¢F + 7 + v, (1)

Facility-specific dummy variables ng? removes time-invariant determinants of pollution p for

facility j. Year-specific dummy variables 7¥ remove common determinants of emissions

affecting all sample facilities in year ¢, such as California-wide economic conditions. l/g-’

clustered at the county-level to allow for arbitrary forms of heteroskedasticity and serial

is

correlation within a county.

The coefficient x} captures the differential emission pre-trend for pollutant p between
facilities that would and would not eventually be regulated by the C&T program during
2008-2012, in annual percentage point changes. The coefficient x5 is the change, or break, in
the differential emission trend after the program’s introduction during 2013-2017, such that
kY + Kb is the post-C&T differential emission trend, also in percentage point changes.

The functional form in equation (1) imposes linear differential pre- and post-trends that
go through the same point in 2012, implicitly assuming that there is no mean shift in dif-
ferential emissions after 2012. To examine whether this functional form is justified, we also
estimate a more flexible version of equation (1) with annual C&T coefficients and compare
the shape of these coefficients to a linear trend break function.'®

We employ two sample restrictions. First, despite the C&T program’s unique eligibility
criteria and timing, the presence of overlapping climate programs, such as the renewable
portfolio standard for electricity generators and the low carbon fuel standard for refineries,
imply that emission changes from facilities further regulated by these programs may not
reflect abatement induced by the carbon market. Since our central interest is to understand

how the carbon market altered EJ gaps, we remove electricity generators and refineries

Because we do not know if these switches are due to actual changes in regulatory status or coding errors, we

retain these 39 facilities in our sample and re-assign them their previous (time-invariant) regulatory status

for 2017. In a robustness check, we drop observations from these 39 facilities in our estimation.
15Specifically, the more flexible version of equation (1) is:

asinh(Yh) = > wE[Di x 1(t =7)]+¢% + 17 + %, (1)

2008<7<2017
T£2012
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from our sample, which constitutes 70% of reported California 2008-2012 GHG emissions.'®

Second, to ensure better comparability between treated and control facilities, we restrict our
sample to facilities with sample average annual GHG emissions below the 75th percentile.!”
These sample restrictions, while reasonable for identification purposes, may limit the external
validity of our results: our benchmark sample of industrial facilities contributed only 5% of
reported California GHG emissions during 2008-2012. In a robustness check, we consider
facilities emitting the other 95% of reported GHG emissions.

Our benchmark sample contains 106 regulated and 226 unregulated facilities. Each reg-
ulated facility is shown as a black dot in Figure 2a. Table S1 shows average 2008-2012
annual GHG and criteria emissions and sectoral distribution for sample regulated and un-
regulated facilities. Since C&T regulatory status is defined by historical GHG emissions, it is
unsurprising that regulated and unregulated facilities exhibit different average pre-program
emissions, nor does this invalidate our differential emissions trend break design, per se. Ta-
ble S1 also shows a slight sectoral imbalance between regulated and unregulated facilities,
with more regulated facilities in extraction and more unregulated facilities in services. In
a robustness check, we replace year fixed effects in equation (1) with sector-by-year fixed
effects to address concerns that this sectoral imbalance may confound our estimates.

C&T generates heterogeneous emission abatement levels across regulated facilities. We
recover facility-level heterogeneity in abatement levels by applying a hyperbolic sine trans-
formation to the first two terms of equation (1) and the estimated facility-level fixed effect.'®
Because facilities differ by average emission levels, this allows us to translate a common
percentage effect into heterogeneous C&T-driven abatement levels, as shown in Figure S4.
Whether a common percentage effect is appropriate in our setting is an empirical matter.
To explore this, we estimate variants of equation (1) that interact the post-C&T trend break

with linear and quadratic functions of each facility’s average annual emissions, allowing the

16T his restriction also addresses concerns about the the 2013 closure of the San Onofre Nuclear Generating
Station, a power plant in southern California (Davis and Hausman, 2016).

1"The 75th percentile corresponds to average annual emissions of 62,770 metric tons of COse.

18 Specifically, C&T-driven emissions is:

v = sinh (Eg’[cj x 1] + RE[C; x 1(t > 2013) x 1] + 5;’) RMSE? /2

where hat notation indicates estimated parameters and RMSE is the root mean squared error from equation
(1). The efMSE®/2 adjustment is akin to that required for a log-transformed variable. To see this, if X ~
LN (1, 0%), then E[sinh(X)] = E[(1/2)(eX —e™X)] = (1/2)(eﬂ+§ - e””%) = sinh(ﬂ)e%2 (MacKinnon
and Magee, 1990). In theory, the hyperbolic sine transformation can generate negative emission values. In
practice, our benchmark model predicts negative emissions for 1%, 1%, 0.2%, and 0.3% of sample observations
for PMs 5, PMyg, NO,, and SO,, respectively. We replace these negative values with zeros.

9For example, a 10% abatement effect implies 10 tons of abatement for a facility with 100 tons of average
annual emissions and 5 tons of abatement for a facility with 50 tons of average annual emissions.
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data to determine whether the C&T percentage effect varies with emission levels. These
models consistently reveal that larger emitting facilities abate more in levels under C&T,
slightly more so than is assumed with a common percentage effect (see Table S3). However,
predicted emissions that allow for this heterogeneity do not meaningfully alter pollution
disparity results (see col. 6 of Table S7).%

Step 2: Modeling pollution dispersal Our second step determines how C&T-driven
criteria air pollution disperses spatially across California. The standard approach is for the
researcher to prescribe the set of locations affected by emissions from a particular source,
either by assuming emissions only disperses within areas in the same administrative unit
of the source or within a radially uniform distance from the source. For example, one may
assume emissions from a facility in Los Angeles County only affect Los Angeles County
or areas within a certain radial distance of that facility. Actual affected areas, however,
may not conform to these assumptions and instead may vary depending on topography
or time-varying meteorological conditions. To fully capture the complexity of pollution
dispersal, we turn to an atmospheric dispersal model that employs topography and real-time
meteorological conditions to generate spatial distributions of criteria pollution concentrations
driven by C&T.

We feed predicted facility-by-year PMs 5, PM;o, NO,, and SO, emissions from step 1,
together with the location and stack height of each facility, into the Hybrid Single Particle
Lagrangian Integrated Trajectory Model (HYSPLIT), an atmospheric dispersal model devel-
oped by the U.S. National Oceanographic and Atmospheric Administration (NOAA) with
real-time meteorological conditions from NOAA’s 40-km resolution North American Model
Data Assimilation System (NAMDAS) (Draxler and Hess, 1998). An emerging literature
uses HYSPLIT to convert pollution emissions to concentrations (Grainger and Ruangmas,
2018; Henneman, Mickley and Zigler, 2019; Casey et al., 2020).

We choose HYSPLIT because it provides a middle-of-the-road approach for our appli-
cation, balancing atmospheric realism with computational tractability. HYSPLIT is more
reliable for modeling pollution dispersal beyond distances of 50 kilometers, which less com-
putationally intensive Gaussian-plume models like AERMOD or APEEP do poorly (EPA,
2015). At the same time, it is less computationally intensive than chemical dispersal models
such as WRF-Chem, but at the cost of not incorporating atmospheric chemistry, which is

important for modeling secondary pollutant formation. To see if secondary PMs 5 concentra-

20We note that these results are consistent with a recent literature building on Melitz (2003)’s hetero-
geneous firm model that emphasizes heterogeneity in abatement levels as a function of a facility’s baseline
emissions level, with more productive firms having both higher baseline emission levels and lower pollution
intensities (Forslid, Okubo and Ulltveit-Moe, 2018; Shapiro and Walker, 2018).
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tions exhibits a different spatial pattern than primary PM, 5 concentrations, in a robustness
check, we replace HYSPLIT with InMAP, a reduced-complexity dispersal model based on the
WREF-Chem model that models secondary PMs 5 concentrations (Tessum, Hill and Marshall,
2017). InMAP, however, has a major disadvantage: while HYSPLIT’s underlying meteoro-
logical inputs cover our 2008-2017 sample period, INMAP only models dispersal patterns in
2005.

We note several features of our HYSPLIT implementation. First, to account for high-
frequency variation in meteorological conditions, we run forward particle trajectories at four
hour intervals, implicitly assuming that annual emissions are distributed uniformly within
the year. In a robustness check, we relax this assumption by distributing C&T-driven annual
emissions at the monthly level according to sector-specific monthly output shares.?! Each
trajectory runs for 24 hours, a duration long enough to ensure most emitted particles leave
California.?? Second, because HYSPLIT does not explicitly account for particle decay, we
apply half-life parameters from the atmospheric chemistry literature set at 24 hours for
PM, 5 and PM;o(U.S. EPA, 2018), 3.8 hours for NO, (Liu et al., 2016), and 13 hours for
SO, (Lee et al., 2011). Third, we assume that a particle no longer contributes to surface
pollution concentrations once it exits the planetary boundary layer, beyond which there is
far less turbulent mixing. We conservatively set the boundary layer height at 1 km above the
surface, which is about double the typical height for California (Rahn and Mitchell, 2016).
As a robustness check, we also consider boundary layer heights of 0.5 and 2 km. As an
illustration of pollution dispersal modeled by HYSPLIT, Figure 2b shows the distribution
of trajectories of pollution emitted by a regulated facility in Los Angeles during 2016. In
total, we compute over 2 million particle trajectories from the roughly one hundred regulated
facilities in our sample during the 2008-2017 period. This procedure takes about 24 hours to
complete using over one thousand facility-by-year parallelized nodes on a high-performance
computing cluster.

Following common HYSPLIT practice, we convert the distribution of trajectories gen-
erated by HYSPLIT into concentration units by summing HYSPLIT trajectories for each
zip code and year and divide by the volume of the atmosphere between a zip code’s surface
and the boundary layer. We further divide by 365 days. This gives us a zip code-by-year

measure of average daily C&T-driven pollution concentration for the 1 km-high air column

21Gpecifically, using Federal Reserve Economic Data, we obtain U.S. aggregate monthly output for man-
ufacturing (NAICS 31-33) and 2-digit NAICS level monthly output for extraction (NAICS 21) during the
2008-2017 period. We then distribute C&T-driven annual emissions according to these monthly output
shares when feeding emissions into HYSPLIT.

22Unlike Henneman et al. (2019), we do not discard the first hour of each particle trajectory because doing
so may omit highly localized pollution concentrations that may be important for our distributional analysis.
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Figure 2: Modeling air pollution concentrations driven by the cap-and-trade program
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NoOTES: Panels illustrates how facility-level emissions is converted to zip code-level pollution concentrations
using an atmospheric dispersal model. Shading in panel (a) shows California zip codes that are designated
as disadvantaged (dark blue) and zip codes that are not (light blue) according to California policy. Black
dots show sample facilities regulated by California’s GHG C&T program. Panel (b) shows the spatial
distribution of HYSPLIT-generated particle trajectories every 4-hours from a regulated facility during
2016. Panel (c) shows zip code-level average daily PMs 5 concentrations (in pg/m?/day) during 2008-2017
driven by facilities regulated by the C&T program as modeled by HYSPLIT.

above each zip code in units of pug/m3/day.”® Figure 2c¢ shows our benchmark HYSPLIT-
generated daily concentration (in pg/m?/day) for each zip code, averaged across 2008-2017
for PMy 5. Figure S2 similarly shows average 2008-2017 zip-code concentrations for PM;y,
NO,, and SO,.?* Note that pollution concentration levels in Figure S2 are generally below
those recorded in ambient monitors because we are only considering pollution concentrations

driven by C&T-driven emissions from sample regulated facilities.

Step 3: Estimating C&T-driven change in EJ gap trends In our third step, we
examine whether the C&T program altered the difference in pollution concentrations between
disadvantaged and other communities, or the EJ gap. Let D; € {0, 1} denote disadvantaged
status, with D; = 1 indicating that zip code 7 contains all or part of a “Disadvantaged
Community Census Tract,” as defined by Senate Bill 535. For zip code i in year t, we

take C&T-driven pollution concentration from HYSPLIT, EY,, for criteria air pollutant p €

230ther HYSPLIT applications convert HYSPLIT particles into concentration units by regressing HYS-
PLIT output onto concentration output from a different atmospheric dispersal model using the same emis-
sions sources (see for example: Henneman, Choirat and Zigler (2019)) to obtain predicted concentrations
using that fitted relationship. We are unable to perform that adjustment as there are no alternative measures
of C&T-driven pollution concentrations in the literature.

24Figure 2, Figure S2, and Table S6 show that criteria air pollution from GHG C&T-regulated facilities
disperses across all of California and not just zip codes designated as disadvantaged.
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{PMy5, PMy, NO,, SO, }, and estimate the following specification:
E = BY[D; x t] + B5[D; x 1(t > 2013) x t] + ¢F + 67 + €, (2)

where ¢! are zip code-specific dummies and §} are year-specific dummies. The coefficient 57,
or the pre-C&T EJ gap trend, captures the linear trend in the EJ gap (from facilities that
would eventually be regulated by the C&T program) during 2008-2012, before the program
was introduced. A positive trend (i.e., 87 > 0) would indicate that the EJ gap was widening
prior to the C&T program. The coefficient 85 captures the change in the EJ gap trend after
the program’s introduction, or the post-C&T EJ gap trend break. Conditional on 87 > 0,
p5 < 0 implies that the introduction of the C&T program slowed the previous positive EJ
gap trend. We consider two additional statistics. The first statistic asks whether the post
C&T EJ gap trend break is sufficiently large such that the EJ gap has actually narrowed in
level terms after the C&T program. This would be captured by 87 + /3%, or the post-C&T
EJ gap trend, with 7 + 85 < 0 indicating that the EJ gap is narrowing.”” A second statistic
examines the relative degree in which C&T program has slowed the prior EJ gap trend.
Specifically, g—% x100 = ( W) x 100 captures the percentage change in the EJ gap trend
following the introduction of the C&T program.

C&T-driven pollution concentration, Ef,, the outcome variable in equation (2), is pre-
dicted C&T-driven emissions from equation (1) via HYSPLIT. As a consequence, €, the
error term in equation (2), does not account for statistical uncertainty in C&T emission
effects from equation (1). Instead, !, may capture residuals that arise when estimating an
average EJ effect in the presence of heterogeneous EJ effects. To address inference con-
cerns, we conduct two standard error adjustments. First, we cluster ¢; at the county level
to allow for arbitrary forms of heteroskedasticity and serial correlation when heterogeneous
treatment effects are not independent and identically distributed. Second, to incorporate
statistical uncertainty in predicted C&T-driven emissions from equation (1), we conduct a
bootstrap procedure drawing multiple vectors of C&T-driven emissions from the estimated
empirical distributions of &} and x%, which are then fed into steps 2 and 3. In practice, we
implement 250 bootstrap draws to generate a component of the standard error for 3} and
B35 that accounts for statistical uncertainty in equation (1). We add this component to the
standard error from directly estimating equation (2) when reporting uncertainty for 5} and

(525 Appendix A.1 provides more details on this bootstrap procedure.

Z5Observe that while 85 < 0 alone implies that the C&T program resulted in EJ gap benefits by slowing
the growth in the EJ gap, it does not necessarily imply that this post-trend break effect is strong enough to
offset the magnitude of the pre-trend such that EJ gap is narrowing in absolute terms following the program.
For that to occur, one needs 85 < —37, or 87 + 8% < 0.

26 As with prior literature, we omit uncertainty associated with atmospheric dispersal, or the mapping
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Finally, to estimate an average EJ gap effect across individuals in California, we weight
each zip code-by-year observation in equation (2) by average zip code population during

2008-2012, the period prior to the program.

Comparison with prior uses of pollution dispersal models Our empirical approach
is part of a broader effort across natural and social sciences to use atmospheric dispersal
models to map pollution emissions to concentrations. Prior studies can be broadly classified
into two groups: whether the analysis is done at the location-level or at the facility-level.

Location-level analyses typically feed observed emissions into a dispersal model, but
without first estimating the emissions effects of environmental policies (Ash and Fetter,
2004; Morello-Frosch and Jesdale, 2006; Sullivan, 2017; Cummiskey et al., 2019; Henneman
et al., 2019; Henneman, Choirat and Zigler, 2019; Kim et al., 2020). Because these studies
omit estimation of policy-driven emissions (i.e., our Step 1), they cannot attribute changes
in pollution concentrations to specific policies.?”

Facility-level studies examine whether a policy’s effect on emissions varies with the de-
mographic characteristics of households downwind of facilities, as determined by the atmo-
spheric dispersal model (Grainger and Ruangmas, 2018; Mansur and Sheriff, 2019). This
approach augments the facility-level in equation (1) by adding a term that interacts the pol-
icy treatment with demographic characteristics of downwind locations. However, given the
complex spatial nature of pollution dispersal whereby concentrations in each location may
be affected by emissions from multiple facilities, it is not obvious whether one can recover
EJ gap changes, the estimand of interest, from such an approach.

In Appendix A.2; we formally demonstrate that the coefficient on the interaction term
from such dispersal-augmented facility-level regressions is not generally informative of the EJ
gap effect. Not only can this coefficient differ in value from the true EJ gap effect, but it is also
not necessarily positively correlated or have the same sign as the EJ gap effect. The reason
is that a facility-level analysis fails to account for the full complexity of pollution dispersal
patterns by overlooking the possibility that a facility can alter pollution concentrations in
both disadvantaged and other locations. For example, a facility-level analysis may recognize

that emissions from facilities in Los Angeles and San Francisco affect air quality in both

between facility-level emissions and zip code-level concentration. One possibility involves resampling mete-
orological conditions in HYSPLIT via a bootstrapping algorithm. Given that our use of HYSPLIT takes 24
hours, overlaying such an approach to the existing 3-step procedure is currently unrealistic under available
computational resources.

2TFor example, Henneman et al. (2019) and Henneman, Choirat and Zigler (2019) insert observed air
pollution emissions from coal-fired power plants into a version of HYSPLIT to examine how much U.S.
PM, 5 concentrations are due to emissions from these plants, but cannot speak to the policies that are
affecting coal-fired power plant emissions.
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disadvantaged and other receptor locations, but it does not undergo the additional exercise
of tallying up pollution from Los Angeles and San Francisco at each receptor location.

To illustrate this, Appendix A.2 shows the restrictions on pollution dispersal patterns
required in order for estimates from a facility-level analysis to equal the true EJ gap effect:
emissions from each facility can only affect disadvantaged communities or only affect non-
disadvantaged communities. This assumption is readily rejected in our setting. For each
sample C&T regulated facility-year observation, we calculate the share of downwind affected
locations containing disadvantaged communities. Figure S3 shows that this share is always
within the unit interval. That is, emissions from every sample C&T regulated facilities alters
pollution concentrations in both disadvantaged and non-disadvantaged communities.

In summary, our approach combines both facility- and location-level analyses. This
enables us to attribute changes in emissions due to the C&T program and quantify the

resulting change in the EJ gap as a consequence of these emissions.

5 Results

This section presents our results. Section 5.1 shows the effect of C&T on differential emission
trends between regulated and unregulated facilities. Section 5.2 examines how these C&T-
driven emissions altered trends in the pollution concentration gap between disadvantaged

and other communities across California.

5.1 Cap-and-trade effects on emissions

Main results To verify whether the linear trend break functional form in equation (1)
is appropriate, we begin with estimating a more flexible variant of that model with annual
C&T effect coefficients, as shown in equation (1’). Those annual coefficients, plotted for
COge, PMy 5, PM;g, NO,, and SO, in Figure 3, appear approximately linear before and
after C&T’s introduction and do not exhibit a mean shift after C&T, consistently with the
functional form in equation (1).

Table 1 reports the trend coefficients before and after the introduction of C&T for GHG
and the four criteria air pollutants.”® Prior to the program, the gap in GHG emissions be-
tween regulated and unregulated facilities increased at an annual rate of 19 percentage points
(i.e., k7). Following the introduction of the program, this trend slowed down dramatically

leading the gap in GHG emissions to fall at an annual rate of 11 percentage points (i.e.,

28The estimating sample sizes differ across the columns of Table 1 because reporting thresholds differ by
pollutant, as noted in Footnote 10.
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Figure 3: Emissions effect of cap-and-trade program
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K 4+ kb) between 2012-2017. Columns 2-4 exhibit similar patterns for PMy5, PM;q, and
NO,. For SO,, the trend break is negative but not statistically significant; we henceforth
will not emphasize SO, results.

Percentage point trend effects can be hard to interpret. Instead, one can translate the
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Table 1: Trend break in emissions

Outcome is (asinh) emissions

(1) (2) (3) (4) (5)
COQ@ PM2.5 PM10 NOl« SOQ;

pre-trend (7) 0.187  0.058  0.083  0.075  0.006
(0.052)  (0.043) (0.033) (0.039) (0.035)
(0.001] [0.183] [0.016] [0.061] [0.875]

trend break (xb) -0.297  -0.097 -0.117  -0.104  -0.037
(0.077)  (0.048) (0.040) (0.050) (0.043)
[<0.001]  [0.053] [0.005] [0.042] [0.393]

post-trend (k) + K5) -0.111  -0.039  -0.034 -0.029 -0.031
(0.036)  (0.018) (0.018) (0.019) (0.019)
[0.004]  [0.039] [0.068] [0.138] [0.109]

2012-2017 annual abatement pct -8.51 -4.68 -4.15 -2.94 -9.35
2012-2017 total abatement (tons) -3.2e+06 -97.89 -140.66 -519.94 -62.10

Facilities 316 302 302 303 303
Counties 41 40 40 40 40
Observations 2,054 1,968 1,968 1,970 1,965

NoTES: Estimates of pre-C&T differential emissions trend (x}), post-C&T differential emis-
sions trend break (x%), and post-C&T differential emissions trend (x] + £%) from equation (1)
for GHG, PMs 5, PMyg, NO,, and SO, across columns. Average annual abatement percentage
and total abatement level (in metric tons) for 2012-2017 shown. All models include facility-
specific and year-specific dummy variables. Standard errors clustered at the county-level in
parentheses, p-value in brackets.

estimates in Table 1 to the average 2012-2017 annual percent change across sample regu-
lated facilities.?” During 2012-2017, the C&T program reduced emissions annually at a rate
of 9%, 5%, 4%, and 3% for GHG, PM, 5, PM;o, and NO,, respectively, for the average sam-
ple regulated facility. Figure S4 shows the implied heterogeneous facility-level C&T-driven
abatement between 2012-2017 for GHG and criteria air pollutants, as defined in Footnote 18.
Altogether, sample regulated facilities reduced 3.2 million tons of COse between 2012-2017.%°

yr o _—yP :
29This is calculated by averaging (W) /5, as defined in footnote 18, across regulated sample
47,2012
facilities for each pollutant p.
30This amounts to an average abatement of 6,740 tons per facility per year during a period with permit
prices between $12-15 per ton. While this may be a surprising amount of abatement at such permit prices,
Colmer et al. (2020) find that the European carbon market lowered emissions by 28,830 tons per firm per

year under a $21 per ton price.
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Robustness checks We subject these emission effects to several robustness checks. First,
Figure S5 considers placebo program start years, plotting x5 for GHG and criteria pollution
emissions from variants of equation (1) that impose alternative C&T start years across 2009-
2016. Generally, we detect the strongest trend break coefficient when we assign the treatment
year to its actual occurrence in 2013.

Table S2 considers several alternative specification and sample restriction choices, with
column 1 reproducing our benchmark results. In Column 2 we add a dummy variable
for C&T-regulated facilities after C&T’s introduction. We do not detect a statistically
significant post C&T mean shift in differential emissions, consistent with the annual C&T
coefficient shown in Figure 3. Table S1 shows that regulated and unregulated facilities are
not perfectly balanced across sectors. To address concerns that differential trends across
sectors may confound our estimates, column 3 replaces year fixed effects with sector-by-year
fixed effects. Column 4 drops the handful of facilities whose treatment status switched only
in 2017. Columns 5 and 6 change the 75th percentile average GHG emissions cutoff to the
70th and 80th percentiles.? None of these robustness checks produces estimates that differ
meaningfully from our benchmark estimates in Table 1.

Our C&T-driven emissions which includes facility fixed effects, implicitly assumes more
pollution abatement from facilities that emit more on average. To examine whether this
assumption is reasonable, column 2 of Table S3 reports a variant of equation (1) that further
includes an interaction between the trend break term and a linear function of facility-level
average emissions. A positive interaction coefficient would imply that larger emitting facil-
ities are abating less, contradicting our assumption. With the exception of GHG emissions
for which the linear interaction term is positive but of very small magnitude, the coefficient
on this interaction term for every criteria air pollution is negative. This specification con-
firms that large emitting facilities are indeed abating more in levels and that our benchmark
model, which estimates an average trend break coefficient across facilities (regardless of size)
is conservatively understating this dimension of emissions abatement heterogeneity. Column
3 of Table S3 shows that heterogeneity by average emissions does not exhibit nonlinearity;,
as indicated by statistically imprecise quadratic interaction terms.

Finally, there may be a Stable Unit Treatment Value Assumption (SUTVA) violation
as pollution may shift from a regulated to unregulated facilities following the introduction
of C&T. If so, the resulting increase in unregulated facility emissions may lead to more
negative estimates of the trend break parameter k5. Following Fowlie, Holland and Mansur

(2012), we consider two robustness checks in Table S4 to examine this possibility. Our first

31The 70th and 80th percentiles for sample average annual GHG emissions corresponds to 48,834 and
82,173 tons of COqe, respectively.
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test observes that firms with multiple facilities could more readily reallocate pollution across
their facilities. In column 2, we restrict the control group of unregulated facilities to those
whose parent company only operates a single plant.*> Our second test notes that a facility
located in a county under U.S. Clean Air Act nonattainment for a particular pollutant may
be more constrained from increasing pollution levels. This idea is implemented in column
3, which restricts the samp